
, ELLIOTT
\

Volume 2: PROGRAMMING INFORMATION

Part 1: PROGRAMMING LANGUAGES

Section 3; FORTRAN

‘s Contents

/ Page

Chapter 1: SYSTEM SPECIFICATION

Vi. 1.1 Minimum Configuration... 6. + +. ee ee ee ee oe 1

} 1.2 Method of Operation ee ee ce oo oe ee oe oe

1,3 The Language ss 2. os eo os ae oe ta we se wee TL

1.4 Form of Distribution .. 1. 0s es es core ce ee 1

1.5 The 900 FORTRAN Representation .. oe oe «+ +. 1

1. 5.1 The Characters Erase, Runout and

Halt. ive Git is Ss Ge Ba BS we ae we OL

de 52.2 Punching Instructions .. .2 «1 «2 e+ es 2

1..5.:3 Names Starting with Q-+0-+- 3

1.5.4 Program Writing +0 c+ «+ es oe 4

1.5.5 The Program Title.. oo s+ co eo ce ee &

15.6 Examplé wa ds cw be wa ce aw ws ow oe °° 8

Ld. T Correction of FORTRAN Programs .. 6

Chapter 2: LANGUAGE SPECIFICATION

2.1 -COnStAHtS se-sa os de os We Be Betws ew Oe we ce TF

22 dak Integer or Fixed Point Constants 7

20402 Real or Floating Point Constant 7

; 2.4, 3) Examples 6, «0 ¢2 eo 06 ce oe we es 8

J 2.2 Names of Identifiers 1. 16 oe ee co ee ee ee ve 8

i

uy

Copyrignt English Electric Computers Limited i

July, 1968 (Issue 3)

900
2.1.3.

Page

2.3 ‘Variables. wea ce as oe we eH aw oe ws os oe = B
2. 350) Integer or Fixed Point Variables .. 8

2s 3a Real or Floating Point Variables .. 9

2.4 Arrays or Subscripted Variables «. «+ oe 9

2..4,.1 Subscripts ...66 06 os 6 6% oe ws 0 9
2.4.2 Subscripted Variables .. oo s+ ee +e 9

2.4.3 Storage of Array8.. .. +s es ee se ee 10

2.4.4 BeAMIPlSS ssid 2% oe ee oe: oe ee we §610

2.5 Expressions .. oo .6 os eo oe ce ce ee ce ce oe 10

215. 2h Order of Evaluation of Terms.. .. -. Ll

2.5.2 The Types of Results .. oo oe ee ee 2

2.5.3 Exponentiation.. o. 00 es ee ee oe oo L2

2.5.4 Divisioie. ca sw Ge0% te wee we ae «(1B

Chapter 3: TATEMENTS

1 Statements .. oo cc ce c+ or oe oe ce ce co ee 14

.2 Arithmetic Assignment Statements 0-2. 4

3 Control Statements... .. 6. 20 oe oo oe oe ee oe «15
3, 3.1 Statement Numbers or Labels., 45

GOTO including IF .. 2. e+ 0+ ce oe 15

Unconditional GOTO «2 oe «e+e 15
Computed GOTO .. 6. oe se ee ee oe ©6216
TP occ ee oe oe 2s ew ad we en ow we we | 96

CONTINUD 55 asus ee ae eee we ae 17
DO esd to elleien wie te oh pie: fret ew wy are TY

An Example of Correctly Nested DO
Loopess «+ se ee as te we sewn ae we = 19

2 Do

.
by

w
d

=

W
W

W
W

W
W

&

W
W

&
W
W

&
W

R
R
W
N
N
N
N

<

° _

3.3.5 PIAUSE: sees cece us vuwe cv enes 19
3, 3.6 STOP oc wre eo: omni ote ie gi wie ie ees oes 1D.
3.3.7 END se ws wo 65 a cds ioe ceenee LY
3. 3.8 RETURN os: sess whee oe Se ce ce 20

Chapter 4: SPECIFICATION STATEMENTS

41° DIMENSION «< ce se si es aw te wei sw se we we, 21

GOMMON .0-00 #0 oe oe oh oe oe wee ew we we = 22

EQUIVALENCE Statements .. oo 0+ 2 e+ 00 oe 22

Ordering of Specifications .. +. os +o ce oro 23

Inconsistent Specifications .. es oe se ee eees 23

4.5.1 DIMENSION and COMMON... .. -. »- 23

4,6 Examples... os eo ce ee oe se oe co ce ee ee 23

4,7 Warning o- o «+ «2 e2 oc oe 20 6 oe 00 08 oe 24

A
B
A
D

a
h
w
n
d

ii

(Issue 3)

900
2. Ls 3s

Page

Chapter 5: FUNCTIONS AND SUBROUTINES

5.1 Library Functions 62 o+ so e+ #6 o8 #2 #6 oe 25

5.2 FUNCTION AND SUBROUTINE Sub-programs.. «. 26

54 201 Sub-Program Titles .. 1. 0+ e+ e+ #6 «+ 26

6.262 Sub-Program Head .. 6. e+ oe e+ e+ oe 26

Bde d The Sub-Program Body... «s ++ e+ + «6 27

5.2.4 Examples se ce ee ce oe oe ve oo 28

5s: 2. '5 Calling Sub-Program 1. ss «+ oe oe «+ 29

5.2.6 Examples .. 1. eo e+ e+ ee e+ oe oe oe 30

Bade t Functions as Actual Parameters., .. .- 30

Chapter 6: INPUT, OUTPUT and FORMAT STATEMENTS

6.1 Input and Output Statements .. 2. ee so e+ eo we oe 31

6.2 Unformatted Input and Output .. 5 es 26 oe oe 0+ 32

6e26 1 Unformatted READ 2. se oe ee oe ee oe 32

6.2.2 The Data Tape.. 1. oe oe ee ee ee oe oe 32

6.2.3 Unformatted WRITE .. «+ es e+ oe e+ oe 33

6.3 FORMAT Statements 6. +2 ce ee ce te oe ve 33

6.3.1 Field Descriptors .. ss oe e+ «+ e+ ov 34

6.3.1.1 Numeric Field Descriptors 34

6.3.1.2 Alphanumeric Field Descriptors.. 36

6.3.1.3 Alphanumeric Data os 0+ ee ee oe 37

6. 3.2 Field Separators .. 2. e+ e+ e+ se oe oe 37

6.3.2.1 Comma .. se se oe os ce ee co ee ve oe 30

6.3.2.2 Oblique Strokes. 6. oé ce ee oe oe oe oe 37

6. 3.3 Repeat Counts .. 6. 20 se ee ee we oe ve ST

6. 3.4 Exhaustion of a READ, WRITE or

FORMAT List .. 2. 20 oe oe ee ee eo oe 30

6. 3..5 Records .. os oe se ee ce ve ee oe oe oe 38

6. 3.6 The implied FORMAT Statement.. .« .. 38

Chapter 7: CODE
7.1 Code Sections «6 se.ce se oe oe cece co oe oe oe 39

71.1 Format: ia is ws 8% ou #6 00 00 66 ba ee 39

7.1.2 SIR Facilities Available in Code Bodies 40

7.1.2.1 Labels 1. 0o oe oe oe oe oe oe ee oe oe 4

7.1.2.2 Global Identifier List oo c+ 0 oo 42

7.2 Communication with Fortran Text... 0. 2s eo «+ 06 42

21 Labels «i so ww ws a8 we wie we ow we we BZ

7.2.1.1 Statement Numbers as SIR Labels 42

7.2.1.2 Location of Variables .. os + ce e+ o« 43

7.2.2 Simple Local Variables... 0. «+ e+ o« 0» 44

7.2.3 Array Variables .. e+ e+ os ce og ee oe 44

7.2.3.1 Unchecked Access «5 eo ee +e +e so oe 44

7.2.3.2 Checked Access 10 c+ oe oo ee ce oe oe 46

Vs Zot Variables in COMMON .. .« «+ 6 06 oe 48

iii

(Issue 3)

900
2.1.3.

Page

. ParameterS.. «+ oo 0+ o6 6 oF ©0 oe 50

ode Defining Sub-Programs .. 0. «+ «+ o¢ 50
Calling Sub-Programs e+ oo o- 52

Floating Point Arithmetic .. «+ o+ «6 53

Library Functions.. «2 oo +e «+ o* os 53

Input and Output .. 26 ©2 20 «+ «+ oe 54

1.4 Haainple Be Re Te FE HE Se ow oe wie ce ee we we 55
a
n
a
e
s

PY

E
N
N

N
e

a Chapter 8: ERROR MESSAGES

8.1 Error Detected by the Translator .. 1. e+ «+ «e 58
8.2 Queries Raised by the Translator .. 2. o- .0 «- 61
8.3 Error Detected by the Assembler c+ «+ oe 62
8.4 Errors Detected at Run-Time .. 2 10 ee o¢ oe 64

8.4.1 Number Too Large For Style of

Printing «6 oo s+ #2 08 «+ «6 0+ «6 68 67

Chapter 9: OPERATION OF THE FORTRAN (BASIC SYSTEM)
9.1 General.. .. 2. oo ce oo oe 06 00 08 00 00 00 we 68

9.1.1 Distribution... .. 2. 22 02 se ee ce oe 68

9.2 Translation .. 1. os eo ve oe 10 02 08 20 oe 00 68

9.2.1 Report Mode 22 ce ee oe ee oe so.we 69

9.3 Loading and Running .. c+ oe +0 6 se «+ oe of 69

9.3.1 Batch Mode .. «+ ss eo oe +0 06 20 oe 69

Dade 2 Relocatable Mode .. «0 «+ 0+ oo ee wo 70

9.3.3 User's Library... .2 «+ oo ev 0% 00 ve 71

Chapter 10: STORE USED ON THE BASIC SYSTEM

10.1 Store Use at Translation Time oc oe +0 oo eo o+ te

10.2 Store Used at Run-Time «6 «+ oo «+ eo oe of of 72

Chapter 11: OPERATION OF THE FORTRAN 16K Le) SYSTEM

11,1 General sos se os ce ve oe i @e Ga we aa FS

11,2 Operation of the system «- s+ se se ee ee ee 73

11,2,1 Report Mode ea ae te owl ee wo we TB

11.2.2 Load and Go Mode «+ «+ «4 se ee e+ 73

11,2,3 User's Library oe oe ee ee oe ae) 74

11.2.4 Overwriting of compiler ‘a om we wee 75

11,3 Store Used 5a AS Be 4a gw BA ER Ow we les 75

11,4 Size of COMMON area... e+ ++ 4 «+ #4 ae ve 76

iv

(Issue 3)

900
2.1.3

Page

Chapter 12: OPERATION OF THE FORTRAN 16K (LP) SYSTEM

12.1 General... 2. 26 ce ce ee ne oe oe we oe te ee oe 7

12.2 Operation of the System .. 2. 6+ ee ee ee ee ee ee vid

12.2.1 Report Mode ee ee ee ee ee te ee ee 77

12.2.2 Translation Mode .. «1 «1 ee we ee oe ne ee 77

12.2.3 User's Library .. 1.1 se ee ee we ee ne ne oe 78

12.3 Store Used... 1. ce ce be we ce ne oe ee oe ee oe 719

12.3.1 Compile Time .. 26 ee te ee ee ee ne ee ee 79

12.3.2 Bouin. Timie«< as wa Ga ee oe awe de we we pene 79

v
(Issue 3)

Printed in England by

Engineering Unit, English Electric Computers Ltd.

900

Zz. 12. 33

Chapter 1: SYSTEM SPECIFICATION

1,1 Minimum Configuration

The 900 FORTRAN system described in this document is

designed for use on the 903 computer. The minimum configuration is a 903B

with 8192 words of store, paper tape reader and punch.

1.2 Method of Operation

The compiler translates FORTRAN programs. into SIR.

The resultant SIR program is subsequently translated and run in conjunction

with a special FORTRAN functions package.

1.3 The Language

The language incorporates most of the features of

basic ASA FORTRAN. It incorporates, in addition, certain features of full

ASA FORTRAN. ,

1.4 Form of Distribution

900 FORTRAN is distributed as a set of two binary

tapes:-

(1) The Translator

(2) The Run Time Package

Further details are given in Chapter 9.

1.5 The 900 FORTRAN Representation

900 FORTRAN is paper tape orientated. The

characters recognised by the SIR internal code (2.1.1 para 1.5) may be

used in punching FORTRAN programs.

Certain characters, which are not part of FORTRAN,

may only be used in Alphanumeric text and in SIR instructions within the

FORTRAN program.

1,531 The Characters Erase, Runout and Halt

The characters Erase and Runout may appear

anywhere and are always ignored. The character Halt is used for stopping

the computer at the end of a data tape or tape of FORTRAN text, in order that

the data or FORTRAN text may be continued on another tape. Halt should

-only be used at the beginning of a new line.

1

(Issue 3)

900
2.1.3.

1.5.2

(1)

(2)

(3)

(4)

(5)

(Issue 3)

Punching Instructions

An example is given in 1. 5. 6.

A 900 FORTRAN program may be punched on

any one of several types of tape perforation

equipment operating in the ISO code. Whatever

equipment is used on the punched tape should

either be verified on a verifier-punch by a

second operator, or be printed up. In the

latter case the print-up produced from the

tape should be carefully checked against the

original program manuscript. On some

equipment new-line is punched as a single

character, while other equipment uses

separate carriage- return and line feed characters.

On the latter equipment N consecutive new-

lines should be punched as:-

carriage-return, N line-feeds, blank

FORTRAN programs may be written either on

a pre-printed form (The ELLIOTT FORTRAN

Program Sheet) or on lined paper with a

vertical line added about 13" (4 cm) from the

left-hand margin.

Punch exactly what is necessary to produce a

print-out like the written program, i.e. all

blank lines, spaces, etc.

If anything is written to the left of the vertical

line it must be punched and at least two spaces

left between it and the rest of the information

on that line.

Care must be taken to avoid confusion between

characters, in particular between

figure 0 and letter O

figure 1 and letter I

figure 2 and letter Z

figure 5 and letter S

These must be punched correctly and punch

operators should familiarise themselves

with the difference in print of these characters

and with the conventions used by the various

authors of the manuscripts which they are

called upon to punch.

900

2.1. 3,

(6) About 6'' (15 cm) of blank tape should be runout

at the beginning of every tape punched.

(7) A wrong character may be cancelled by

over-punching with 'erase'. This erase

character does not count towards the

maximum number of characters that may be

punched on a line (see 9 below).

(8) Every tape should be ended by

new line

about 2'' (5 cm) blank tape

Halt code

about 6" (15 cm) blank tape

(9) There may not be more than 120 characters

on a line of text (Blank and erase do NOT

count towards this total).

(10) Some tape preparation devices can only print

about the first 70 characters onaline. Ifa

line is longer than this continue punching on the

same line, Do not insert additional new-line

characters. Note the circumstance, since

especial care may be needed in checking that

the line has been correctly punched.

1. 53:3 Names Starting with Q

If the name of a program, sub-program or

identifier starts with the letter Q, its next character must be the letter U.

Additional SIR identifiers are introduced as labels, during the translation

of FORTRAN. These identifiers start with the letter Q followed by a character

other than U. Consequently, if this restriction is not observed, clashes may

occur.

3

(Issue 3)

1.5.4

(1)

(2)

(3)

(4)

(5)

1.5.5

Program Writing

Each FORTRAN statement starts on a new line.

Continuation lines are permitted only for

FORMAT and GLOBAL statements and begin

with a currency symbol ($ or &).

Comment lines start with the character C,

followed by two or more spaces. The

FORTRAN word CALL must be terminated

by space. Elsewhere spaces are not

significant, except in alphanumeric strings.

Programs may be written either on a pre-printed

form (Elliott FORTRAN Program Sheet) or.

on lined paper on which a vertical line has

been drawn about 1$'' (4 cm) from the left-hand

margin.

To the left of this line are written:

(i) The letter C indicating a comment

(ii) Statement numbers.

(iii) A currency symbol, indicating

a continuation statement.

There must not be more than 120 characters

on a line.

The Program Title

A 900 FORTRAN program or sub-program

must be preceded by a GLOBAL statement which comprises the name of the

program, followed by a list of the names of any sub-programs it uses.

This statement is compulsory for programs, but may be omitted for any

sub- program which does not itself use sub-programs.

The list is preceded by the word GLOBAL

and the names comprising it are separated by commas, it may extend

over several lines (and these additional lines must start with a currency

sign) and it is terminated by]. :

Examples

GLOBAL, PROG]

GLOBAL, PROG3, SUB1, SUB2, MAXMULT, MXDIV

£ INVMX]

4

(Issue 3)

1.5.6 Example

An example of a Program:

(a) As Written

SUBROUTINE MXMULT (A, B, C, I, J, K)
DIMENSION A(I,K), B(I, J), C(J, K)

Cc A=B¥C
polil=1,1
pO 1KK=1,K
AA =0
pDO2 JJ=1,5

2 AA = AA + B(II, JJ)* C(JJ, K)
1 A(II, KK) = AA

RETURN

END

(b) As Punched

(i) First Layout

SUBROUTINE MXMULT (A,B, CG, I, J, K)
DIMENSION A(I, K), B(I, J), C(J, K)
Cc A=BtC

pOlilrel,1
DO 1 KK =1,K
AA=0
DO2 JJ =1.5
2 AA = AA + B(II, JI)* C(IJ, KK)
1 A(II, KK) = AA
RETURN

END

(ii) Alternative layout

SUBROUTINE MXMULT (A, B, G, I, J, K)
DIMENSION A(I, K)B(I, J), C(J, K)

Cc A = BYC
pO1lm=1,1
DO1KK=1,K
AA =0
DO 2 JJ.=1,5

2 AA = AA + B(IL, JJ)* C(JJ, KK)
1 A(II, KK) = AA

RETURN

END

900
2.1.3.

(Issue 3)

1.5.7 Correction of FORTRAN Programs

Corrections may be made in either the

original FORTRAN, or in the SIR program, which is produced from it.

To assist the user in making corrections in the second way each group of

SIR statements is preceded by a comment line comprising the FORTRAN

statement which give rise to them.

To assist the programmer in editing his

tapes the halt code character is available. To insert a statement or group

of statements into a program after a given statement S say, punch a halt

code onto the tape on the blank that forms part of the new-line sequence

that terminates S. On reading the halt code the computer will come to a

systems wait. Then translate the additional statements (the last one being

followed by a halt code on a new line), and finally continue translating the

original program.

Alternatively, a 900 FORTRAN program may

be modified by the use of the 903 Edit program, (see Volume 2. 3.2)

(Issue 3)

900

2.1.3.

Chapter 2: LANGUAGE SPECIFICATION

2.1 Constants

2.1.1 Integer or Fixed Point Constants

An integer constant must lie in the range

- 131071<constant<+131071

If it is negative it must be preceded by a minus sign, if it is positive it may,

put need not be, preceded by a plus sign.

2.1.2 Real or Floating Point Constant

A real constant possesses one or both of

two features that distinguish it from integer constants

(i) A decimal point

(ii) An exponent

An exponent consists of E followed by an integer.

It follows a number which may, but need not, contain a decimal point and

indicates the power of ten to which the number as written is to be raised, to

obtain the intended number. On a data tape an exponent part occurring by

itself is treated as though it was preceded by 1. This form may not occur

in the text of a program.

A real constant must lie in range

-283 < constant < 2°%. i.e. approximately -9, 918<constant<9, 918

Within the machine it is expressed to a

precision of about one part in 108.

A constant may not contain a space.

On data tapes ,. and @ are permissible

alternatives to E. :

i

(Issue 3)

900
2.1.3.

2.1.3 Examples

314
-19 are integer constants

0

~

3.
-.3

0/0 are
-2E3 these represent 1

-2000.0 the same > nee

-20000E-1 number aaa

1E2 these represent

100 the same number

2.2 Names or Identifiers

(1) A name is a string of letters and digits that begins with

a letter.

(2) An integer name starts with I, J, K, L, Mor N.

(3) Areal name starts with any other letter,

(4) Ifa real name starts with the letter Q its second ;

character must be the letter U. (The reason for this

special restriction of 900 FORTRAN is explained

in 1.5. 3).

(5) Names may comprise any number of characters.

However they are only distinguished by their first six

characters.

2.3 Variables

2« 3<1 Integer or Fixed Point Variables

These variables are the names of quantities

that only take integer values.

They are defined by integer names (see 2. 2)

The values assigned to them during computation

must be permissible values for integer constants (see 2. 1. 1).

Unless a COMMON statement (see chapter 4)

requires otherwise, each integer variable is allocated a unique store location.

8

(Issue 3)

900
2.1.3.

2.3.2 Real or Floating Point Variables

These variables are the names of continuously

varying quantities.

They are defined. by real names (see 2. 2).

The values assigned to them during
computation must be permissible values for real constants (see 2. 1. 2).

Unless a COMMON or EQUIVALENCE

statement (see Chapter 4) required otherwise, each real variable is allocated

to a unique pair of adjacent store locations. ‘

2.4 Arrays or Subscripted Variables

2.4.1 Subscripts

A subscript comprises an integer expression

of one of the following forms:

I
2
T+ 2
1-2 Aus Qe wha Seay

3 #1

3 1+4
Ze 1-4

TeGWd, AMov L¥% elec.

where I may be replaced by any integer variable (see 2. 3,1) and 2, 3 and 4

may be replaced by any integer constants. A unary plus or minus sign may

be prefixed to any of these forms e.g. -I, +3 #1

2.4.2 Subscripted Variables

Before it is used a subscripted variable

must be declared as such in a DIMENSION statement (see 4. 1).

It may be a real or an integer variable

(see 2. 3).

It may have up to two subscripts which are

written in parentheses after its name.

If it hae two subscripts they are separated

by a comma.

9
{Issue 2)

900

2e 13.

Whenever a subscripted variable is referred

to during the’ execution of the program its subscripts are evaluated. The

values they are found to have must be positive and be less than the maximum

values specified by the DIMENSION statement in which it was declared. (In

the case of a subscripted parameter of a sub-program the relevant maximum

value is that of the actual parameter specified in the current call of the

sub- program).

2.4. 3 Storage of Arrays

The elements of arrays with two subscripts

are stored with the value of the first subscript varying most rapidly.

2.4.4 Examples

A(1)
DOG (3, 7#ITEM- 5000) elements of real arrays

LIST (4 JULIET)
JIG(2#I-9, - 4*J+100) elements of integer arrays

2.5 Expressions

FORTRAN expressions comprise a string of constants,

variables and functions separated by operators and delimiters.

The operators are:

+ which indicates positivity or addition.

- which indicates negation or subtraction.

* which indicates multiplication. (It is used rather
than x to avoid confusion with the letter X).

/ which indicates division.

et which indicates exponentiation.

The delimiters are:

() which enclose subscripts and parameter lists and,
modify the order of the evaluation of the terms of

expressions.

which separates items in a list.

<space> which may make the expression easier for a human

being to read but is ignored by the compiler inside an

expression,

<newline> which terminates the expression.

10

(Issue 2)

900
251.3.

25.1 Order of Evaluation of Terms

(1) The current values of all the variables in the

expression are first determined. (This may

require the evaluation of subscripts or functions

before the evaluation of the main expression

can continue).

(2) Any exponentiation operations are next

performed. The desired order of multiple

exponentiation should be indicated by

parentheses. If these parenthese are omitted

903 FORTRAN will evaluate the expression

from the left, other compilers may however

reject the construction or evaluate it differently.

(3) Multiplication and division occur next.

(4) Addition and subtraction are performed last

of all.

Parentheses may be freely used, to indicate

the grouping of terms. Sub-expressions within parentheses are evaluated

in the same manner but not necessarily in same order as subscripts or

functions and the value so found is used in further determination of value

of the main expression.

Note 1.

Note 2.

The effect of division extends only over the next element.

For example:

A/B*C is equivalent to (A/B)*C or A*¥C/B

A/B/C is equivalent to A/(B*C)

If the terms of an expression involving real variables are of

widely differing magnitudes the result may, because of the finite

precision of representation of intermediate results, depend

on the order in which various operations are performed. Thus,

if A=B=10!° and C=10~-!° then (A-B)+C=107!° while A-(B-C)=0

If in such cases, the desired order of evaluation cannot be

specified by the judicious use of parentheses then the expres sion

must be rewritten as several separate expressions.

11

(Issue 2)

900

24. 43:3.

2.5.2 The Types of Results

(1) If, in evaluating the parts of an expression it

is necessary to add together, subtract or

multiply terms of which some are real and

others are integer, all the integer terms are

converted to real before the evaluation

preceeds.

(2) Division and exponentiation always yield real

results.

2... 52.3 Exponentiation

The validity of a##tb depends on the values

of a and b and on the type of b. The result, where it exists, is always real.

If b is an integer variable, constant or

expression then the operation is valid unless both a and b are zero. In all

other cases the result is that obtained by multiplying a by itself |b| times,

and, if b is negative, taking the reciprocal.

If b is a real variable, constant or expression

then the operation is only valid if a is positive. The result, when it exists

has the value exp(b#log,(a))

If, when a and b are of type integer and b

is negative, exponentiation is required to give a zero answer, it is suggested

that the following function sub- program be introduced:

FUNCTION IEXP(I, J)

IF (J) 1,2,3
1 IEXP = 0

RETURN
2 IEXP = 1

RETURN
3 IEXP = I¥¥J

RETURN
END

12

(Issue 2)

900

2.1.3.

2. 5.4 Division

If integer division is required it is suggested

that the following function sub-program be introduced:

FUNCTION IDIV(I, J)
IDIV = I/J

RETURN

END

This will give an integer result rounded

towards zero, as exemplified by the following table:

IDIV (K, 3) IDIV (-K, 3)

K and and

IDIV (-K, - 3) IDIV (K, - 3)

0,lor2 0 0

3,40r5 1 -1

6,7 or 8 2 -2

3n, 3ntl n a

or 3n+2

13

(Issue 2)

900
2.1.3.

Chapter 3: STATEMENTS

3.1

(1)

(2)

3.2

Statements.

A FORTRAN program consists of a sequence of

statements. These are two types:

Executable statements, which are obeyed when the

program is run.

Non- executable statements, which further define the

meaning of executable statements. Non- executable

statements are of four types:

(a)

(b)

(c)

(4)

Those which give information to the compiler

e.g. COMMON statements.

Those which further define run-time

operations, e.g. FORMAT statements.

Those which contain information used both

during compilation and at run-time.

e.g. DIMENSION statements.

Those which may contain information of

value to human beings reading the program,

but which have no effect whatsoever on its

compilation or running. i.e. Comments.

Arithmetic Assignment Statements

An arithmetic assignment statement is an executable

statement of the form

VE

where v represents an arbitrary variable and e represents an arbitrary

expression, If v and e are of different types automatic type conversion

occurs. When a real result is assigned to an integer variable:

(a)

(b)

14
(Issue 2)

It is always rounded towards zero.

Integer overflow may occur.

900

2.1.34

3.3 Control Statements

Control statements indicate the order in which the

executable statements of a program are to be obeyed. Usually they indicate

departures from obeying executable statements in the order in which they

are wvitten.

3.3.1 Statement Numbers or Labels

A statement number is an unsigned integer

in the range 1 to 99999 inclusive that is prefixed to a statement to allow it

to be referred to by other statements. A given statement number may only

be used once within a given program or sub-program. Not more than one

statement number may be prefixed to a statement.

3.3.2 GOTO including IF.

GOTO statements are control statements

that indicate explicitly that executable statements are not to be obeyed in

sequence. They are themselves executable statements. A GOTO statement

gives the number of the statement that is to be obeyed next. This next

obeyed statement must be an executable statement.

The next executable statement after a GOTO

statement must bear a statement number.

Three types of GOTO statements are

available in 900 FORTRAN.

(1) The unconditional GOTO statement

(2) The computed GOTO statement

(3) The IF statement

3.3.2.1 Unconditional GOTO

These statements are of the form

GO TOn

where n is the number of the statment which is to be obeyed next.

15

(Issue 2)

900
2. 1,3.

Examples.

GO TO7

5 GO TO 8

3.3.2.2 Computed GOTO.

These statements have the form

GO TO(n,,Ng,Ng- 0% Nyy)ri

where N4yNg,Ng eee Nyy are M statement numbers (which need not all be

different) and i is a non-subscripted integer variable which, whenever the

statement is obeyed, must have a value in the range 1,2,3... m.

Examples.

GO TO (53, 1, 53, 437), INDEX

53 GO TO (150, 151), NY

3.3.2.3 IF

These statements have the form

IF(e)n,, ngs Ng

where e is an expression and n,,n, and n, are three, not neces sarily

distinct, statement numbers.

according to the sign of e.

Control is transferred to n,,n, or ng

Label of the Next Executable Statement Sign of e

NEGATIVE

ZERO

POSITIVE

Examples.

IF(INDEX- 2)53, 1, 500

500 IF(INDEX- 3)999, 53, 437

53 IF(NY-2) 150, 151,999

16

(Issue 2)

900
2. 1.3.

Provided that INDEX and NY only take their

expected values ((1 to 4) and (1 or 2) respectively) this sequence of IF

statements has the same effect as that of the sequence of two computed

GOTO statements given ag an example in 3. 3.2.2. Control can never be

transferred to the label 999, and in practice this would either label a dummy

statement such as CONTINUE or would be replaced in the IF statements by

the adjacent statement number so that, for example, the last statement above

would be written

53 IF(NY-2) 150, 151, 151

3, 3.3 CONTINUE

A CONTINUE statement is a dummy executable

statement which allows a statement number to be placed at some point where

it might not otherwise be placed.

Since it is itself an executable statement its

use does not permit several numbers to be attached to.the same statement.

3. 3.4 DO

A DO statement indicates that the following

group of statements, up to and including the statement whose reference

number is given in the DO statement, are to be obeyed a number of times

while an integer variable takes a succession of values in arithmetic

progression. It is written in the form

DO n i=m,,m,,M,

where

n is the statement number of the last statement to be obeyed

each time the DO loop is traversed,

i is an un-subscripted integer variable,

m, is the value to be as sumed by i the first time the DO loop is

is traversed, ,

m, is the constant interval of the arithmetic progression of

values assumed by i. It must be greater than zero.

m, which must be greater than m,, is the greatest value which .

i may assume. (It need not be attained nor, if m,>1, need it

be attainable)

17

(Issue 2)

900

Be: ei-3s

m, is added to i at the end of each traverse

of the DO loop. If the new value of i is less than or equal to m, the loop is

traversed again. Otherwise the loop is terminated and the next executable

statement (following the statement labelled n) is obeyed.

m,,m, and mg, may be unsubscripted integer

variables or unsigned integer constants.

If m, has the value 1 it may be omitted and

the DO statement written in the form

DO ni=m,,m,

When the DO loop is left because if i were

again incremented it would exceed m,, the value of i is undefined.

If the DO loop is left by means of a GOTO

statement the value of i is preserved.

The values of i, m, and mg may not be

altered within the DO loop.

With one exception a GOTO statement may

not cause a jump into a DO loop that bypasses its initial DO statement. The

exception is when the DO loop was itself left by a jump and the values of i,

m, and m, have not since been altered. :

DO loops may occur within DO loops to a

depth of 20.

DO loops may not intersect each other.

The first statement of a DO loop must be an

executable statement.

The terminating statement of a DO loop must

not be a GOTO statement (an IF statement is a GOTO statement). Where

this restriction arises a CONTINUE statement should be used after the

GOTO statement.

18

(Issue 2)

900,
2; 1,3.

3.3.4.1 An Example of Correctly Nested DO Loops-

DO 307 I=1, 10
DO 307 J=I, 30,1
DO 314 INDEX=5, 15

A(I, J) = A(I, J)- B(INDEX)
314 CONTINUE

DO 330 INDEX=- 10, 0, 3
DO 329 K=LLB, 12

IF(B(INDEX+10)) 345, 329, 345
329 A(INDEX+10, K)=0.
330 CONTINUE

DO 307 K=1, 10

GOTO 307

345 G=Gtl

GOTO 329

307 CONTINUE

3,.3..5 PAUSE

An executable statement that causes the

computer to wait until the operator indicates that computation is to con

It should normally be preceded by a statement that causes a message to be

displayed telling the operator to take some special action (e.g. to load the

next data tape).

timue-

3.3.6 STOP

An executable statement that causes the

computer to abandon the calculation. The program cannot be continued, but

it will normally remain intact in store, so that it can be re-entered at the

beginning with a fresh set of data.

3, 3,7 END

An executable statement which

(1) Tells the compiler that it has reached the end

of the program or sub-program that it is

translating into SIR.

(2) Has, at runtime, the same effect as SsTOE- -

19
(Issu=— 2)

900

2.1.3,

3. 3.8 RETURN

An executable statement which may only occur
in a sub- program and indicates that the sub-program has completed its task
and that control is to be returned to the calling program or sub-program at
the executable statement following its call.

20
(Issue 2)

900

2. 1. 3.

Chapter 4: SPECIFICATION STATEMENTS

Three types of specification statement are available in 900

FORTRAN:

(1)- DIMENSION statements

(2) COMMON statements

(3) EQUIVALENCE statements

4.1 DIMENSION

A DIMENSION statement is of the form

DIMENSION v, (i,): Volig)y« © +s Malin)

where each v is the name of a subscripted variable and the corresponding i

indicates the permissible range of values for its subscripts. Each i is

either:

a) an integer constant c indicating that v is a one~

dimension array (a vector) of c elements, which may

be referred to as v(1), v(2)... v(c), or

b) a pair of integer constants c,, c, indicating that v isa

two-dimension array of c,*c, elements which may be

referred to as v(1,1), v(2,1)... v(c,,1), v(1, 2)...

v(cy, Cy).

If and only if, v is the name of an express formal

parameter of a sub-program (see 5.2. 5(3)) i may comprise the names of

one or two integer variables which are also formal parameters of the

sub-program. (see also 5.2.2; and 5.2.5.)

Example.

DIMENSION A(10), B(5, 15)CAT (99)
DIMENSION A(1), B(5, J), C(I, J)

The second example could only occur in a sub- program

which numbered A, B, C,I and J among its parameters.

ai

(Issue 3)

4.2 COMMON

A program or sub-program may contain one or more

statements of the form:

COMMON v,,; Ves +++ » Yn

where each v is the name of a variable (which may be an array name)

which is used elsewhere in that program or sub- program.

Subject to the rule that a real variable occupies two

store locations while an integer variable occupies one location the effect

is that the kth item in COMMON in a given program or sub-program

occupies the same location in a special store area (the COMMON area) as

the kth item in COMMON in any other program or sub-program. Variables

are allocated store space in the COMMON area in the order in which they

are listed in COMMON statements. If two or more COMMON statements

occur in one program or sub-program then the first variable of each

COMMON statement except the first is placed immediately after the last

variable in the preceding COMMON statement.

COMMON serves two purposes:

a) it provides an alternative method of communication

between a program and its associated sub-programs

to that provided by the use of express formal

parameters (see 5, 3)

b) it permits the economic use of storage space.

If arrays ina 900 FORTRAN program are placed in

COMMON larger programs may be loaded, since the

COMMON area may overwrite the program loader,

whereas: local arrays are embedded within each

program unit.

Examples of the use of COMMON statements and of

the resulting allocation of store locations are given in 4. 6.

4,3 EQUIVALENCE Statements

An equivalence statement is of the form:

EQUIVALENCE (k,), (kg), «+++ (ky)

where each k is a list of the form:

Ay, Agr vers Am

and each a is the name of a variable or an array element.

22

(Issue 3)

900
2. 1,3.

In Basic 900 FORTRAN the occurrence of an EQUIVALENCE

statement is noted by output of a query message, but no other action is taken.

Run time store space is not saved by its use, but providing it has not been

misused to equate entities,programs which use EQUIVALENCE will be

correctly executed. Note that the definition of ASA FORTRAN specifically

forbids the use of EQUIVALENCE to equate entities.

4.4 Ordering of Specifications

A DIMENSION statement must precede the occurrence

of the variables listed in it in any other statement.

A COMMON statement must precede the occurrence

of the variables listed in it in any statement other than a DIMENSION

statement.

An EQUIVALENCE statement must precede the

occurrence of the variables listed in it in any statement other than a

DIMENSION statement, a COMMON statement or other EQUIVALENCE

statement. (This rule is inserted for compatibility with other dialects of

FORTRAN. Its breach will not be detected and will not lead to failure of

the program).

4.5 Inconsistent Specifications

4.5.1 DIMENSION and COMMON

Within a program or sub-program (see 5.2)

a variable name may occur in at most one DIMENSION statement and one

COMMON statement.

4.6 Examples

The specifications in program CAT:

DIMENSION A(5), 1(3,2), B(2), L(3)

COMMON 4,1, J,G
COMMON kK, LL

coupled with the specifications is sub-program DOG:

DIMENSION TAIL(6), (3)
COMMON EAR, BARK, TAIL, F, K, BK

would lead to the following allocation of space in the first 20 locations of the.

COMMON area.

23

(Issue 3)

900
Be ls. Be

Variables declared in
Location CAT DOG

COMMON
ei } A(1) P EAR

+2.
43 \ A(2) L BARK

+4
5 L A(3) \ TAIL(1)

+6
-" \ A(4) h TAIL(2)

+8
9 \ A(5) \ TAIL(3)

+10 I(1, 1)

+11 1(2, 1) b TAIL{(4)

+12 1(3, 1)

413 1(1, 2) p sans)

+14 1(2, 2)

415 1(3, 2) i TAIL(6)

+16 J

+17 p a
418 : i K of DOG

+19 K of CAT

+20 LL \ BK

4,7 Warning

Any user of COMMON statements is strongly advised

Effects such as the overlap of to draw a store map such as that in 4. 6.

J and G of CAT with F and K of DOG are not erroneous but the effect is

unlikely to be that desired by the programmer.

and simplify the calling and construction of sub-programs.

can cause

24

(Issue 3)

chaos.

COMMON statements if carefully used can save space

If mis-used they

900

2.1, Ba

Chapter 5: FUNCTIONS AND SUBROUTINES

A FORTRAN function is a single- valued function of one or

more variables.

Three types of functions are available in Basic 900 FORTRAN:

(1) Standard Library Functions

(2) FUNCTION sub-programs

(3), Additional Library Function (see Chapter 9)

A SUBROUTINE sub-program has the same form as a

FUNCTION sub-program, but it returns the results, if any, of its

computations to the program, or sub-program that called it by altering

the values of one or more of its parameters and of variables in COMMON

(see Chapter 4).

5.1 Library Functions

The following functions, which are all real functions

of a single real argument, are automatically available to all users of 900

FORTRAN. Collectively they form the basic library on the 900 FORTRAN

of these Functions used within a program unit (Main

must be declared in a GLOBAL statement

at the head of that unit (see 1.5. 5)

systems tape. Any

program, subroutine or function)

ALOG (E) The natural logarithm of E

SIN (E) The sine and cosine of E, where E is

COS (E) measured in radians.

EXP (E) e=

ATAN (E) The principal value in radians of the arctangent of E

ABS (E) The absolute value (modulus) of E. (Intended for

use with real E).

SQRT (E) The square root of E,

In addition the following function is automatically

available: it is an integer function of an integer variable:

Function Definition

IABS (IE) The absolute value (modulus) of IE, (Intended for

use with integer IE).

25

(Issue 3

900
2.1.3.

Notes

1; In SIN (E) and COS (E), ABS (E) must be less than 218, This

condition is imposed to ensure that, after multiples of 27 have

been removed, enough significant figures remain for the

evaluation to be meaningful.

2. ATAN can take any value between - BY and Zz inclusive.

To the (finite) precision of the representation both values are

attained.

5.2 FUNCTION and SUBROUTINE Sub-programs

In basic 900 FORTRAN ail functions must be written as

FUNCTION sub-programs. A value must be assigned to the function name

within the sub-program body. (see 5.2. 3)

The computation performed by a SUBROUTINE

sub-program, however may result in the assignment of many or no values.

Thus one SUBROUTINE might invert a matrix while another prints the

results of a computation performed by the main program.

5.2.1 Sub-Program Titles

A sub- program should have a GLOBAL

statement as a title before its heading unless it does not use any sub=

programs of library Function, (see 1.5.5) The first name in the GLOBAL

list must be the sub- program name.
"6.2.2 The Sub-Program Head

A sub- program head takes the form

FUNCTION f(m,, ..- ™,)

SUBROUTINE s(m,, mg, ..- m,)

or SUBROUTINE s

where

(1) f is the name of the FUNCTION and specifies its type

in accordance with the usual rules (see 2.2).

(2) s is the name of the SUBROUTINE. (A subroutine

does not have a type associated with it consequently,

apart from the Q rule (see 2.2) and the necessity of

avoiding clashes of names the choice of s is completely

arbitary)

26
(Issue 3)

(3)

(4)

(5)

900
2.1.3.

The m,,M,, .-- mj, are express formal parameters.

Each mj; must be the name of a variable or an array.

(e.g. an express parameter may not bea sub- program).

Each mj which represents an array must appear ina

DIMENSION statement within the body of the sub-program

(see 4.1), In this DIMENSION statement the upper

bounds of its suffices may be given either as integer

constants or as integer variables which are themselves

express formal parameters.

In addition to the express formal parameters a sub-

program may refer to variables in COMMON, these

may be regarded as implicit parameters.

55.23: 3 The Sub- program Body

(1) A sub-program body is, subject to certain

special rules, a normal FORTRAN program.

(2) A SUBROUTINE does not have a value and

no assignment may be made to its name, 8.

It may communicate information to the program

that called it (the main program or another

sub- program) by altering the values of one

or more of its parameters.

(3) Within a FUNCTION sub-program its name, f,

acts as an ordinary variable, of the appropriate

type. It is undefined on entry to the FUNCTION

and a value must be assigned to it before the

FUNCTION is left. This value is the value of

the FUNCTION.

(4) The alteration by a FUNCTION of any of its

parameters is not considered to be an error

in 900 FORTRAN. However the evaluation of

a FUNCTION may not validly alter the value

of any other element within any expression,

assignment statement or CALL statement in

which the FUNCTION appears.

(5) A sub-program body may not itself contain a

declaration of a sub-program.

(6) An explicit formal parameter may not occur in

a COMMON or EQUIVALENCE statement (see

Chapter 4).

27

(Issue 2)

900

2,153.

_

—

28

(Issue 2)

(7) When a sub- program has completed its task

it returns control to the program that called

it by means of a RETURN statement. This

comprises the word RETURN on a line by

itself.

(8) The body of a sub-program is terminated by

an END statement. This comprises the

word END on a line by itself.

5.2.4 Examples

FUNCTION MAX (I, J)
IF(I-J)1, 1,2
MAX=J
RETURN
MAX=I
RETURN
END

GLOBAL, TMAX, MAX]
FUNCTION TMAX (K, M)
TMAX TAKES THE GREATEST VALUE
OF K, M and A NUMBER READ FROM TAPE
M=MAX (K, M)
READ (1) TMAX
IF (TMAX-M) 1, 2, 2
TMAX=M
RETURN
END

SUBROUTINE MTXMLT(A, N, M, B, L, C)
DIMENSION A(N, M), B(M, L), C(N, L)
C BECOMES A TIMES B
DO1I=1,N
pOolK=1,L
D=0.0 :
DO 2 J=1,M
D = D+A(I, J)#B(J, K)
C(I, K)=D
RETURN
END

900

26 dads

5.205 Calling Sub-Program

(1) A FUNCTION sub-program is activated by
writing

f(m,,m,, ..-. my)

in some statement which can make use of the

value of f.

(2) A SUBROUTINE sub-program is activated by

a CALL statement, e.g.: ‘

CALL s(m,,m,, -- M_)

The FORTRAN word CALL must be terminated

by at least one space

(3) If an express formal parameter is an array the

corresponding actual parameter must be an

array of the same type with the same number

of dimensions.

(4) If an express formal parameter which is an

integer variable is used as a subscript bound ©

then the corresponding actual parameter

must be an integer variable to which the

Variable sv bsce iors correct value of the subscript bound has been

assigned prior to the call of the procedure.

(This rule is inserted for compatibility with

other dialects of FORTRAN. Whatever bounds

are quoted for the subscript of an express

formal parameter which is an array the true

bounds of the actual parameter will be used in

verifying that any reference to that array is

valid).

(5) If an express formal parameter is a simple

variable the corresponding actual parameter

must be a simple variable, array element,

or constant or expression of the same type.

If an ‘actual parameter is a constant or

expression then the corresponding formal

How ko ge

parameter:

(a) must not occur in a DIMENSION
statement

(b) must not have a value assigned to it

during the execution of the sub-program.

(6) The actual parameters need not all be distinct.

29
(Issue 2)

900
2 133

5. 206 Examples

This example is based upon the example of

sub-programs in 5. 3. 4.

GLOBAL, EXAMPLE, MAX, MTXMLT]
DIMENSION K(50), A(5, 10), B(10, 20), C(5, 20)

CG THE ELLIPSIS INDICATES THE ASSIGNMENT OF
© VALUES TO THE ELEMENTS OF K, A AND B

I=MAX(K(1), K(2))
DO 1 J=3, 50

1 I=MAX(I, K(J))
Il =5
12 = 10
13 = 20
CALL MTXMLT(A, II, 12, B, 13, C)
END

G)
5.2.7 Functions as Actual Parameters

Where the actual parameter to a sub-program

is an expression, this expression may include Function calls. Where a

function name with parameters, e. g. SIN(X) is used as an actual parameter

by itself, it should be converted to an expres sion by enclosing in a set of

parentheses. e.g.

B = TMAX(X, (SIN(Y)))

SIN(Y) is evaluated before TMAX is entered.

This rule is given for compatibility with other dialects of Fortran. In fact

the expression

B = TMAX(X, SIN(Y))

will have the same effect in Basic 900 Fortran, but not with other compilers.

30

(Issue 2)

900
2.1.3.

Chapter 6: INPUT, OUTPUT and FORMAT STATEMENTS

6.1 Input and Output Statements

Input and output statements take the form

READ (u,f)k or READ (u)k

WRITE (u, f)k or WRITE (u)k

where:

u is an integer constant or variable indicating a device

f is the statement number of a FORMAT statement (see 6. 3)

k is a list of items to be input or output

If'f'is absent the statements are known as unformatted

statements, otherwise they are known as formatted statements.

Value of Device referred to ina
u READ statement WRITE statement

1 The tape reader <error>

2 <error> The tape punch

3 The teleprinter The teleprinter

4-5 <error> <error>

6-8 see note 2 see note 2

Notes:

1. Ifu is less than 1 or greater than 8 or the word error appears

against the value of u then reading will take place from the tape

reader or writing to the tape punch.

2. The numbers 6-8 are reserved for special input/output routines.

31

(Issue 2)

900
2.1.3.

6.2 Unformatted Input and Output

6.2.1 Unformatted READ

In the statement sequence

DIMENSION Y(2, 3), B(10)

J=3

READ (1) X, Y, J, B(J)

The effect of the READ statement is to

assign the first number on the data tape to the variable X, the next six

numbers to the six elements of Y in the order Y(1,1), Y (2,1).... ¥ (2, 3)

the eighth to J and, irrespective of the new value of J, the ninth number to

B(3).

6.2.2. The Data Tape

Each number on the data tape must be written

in one of the forms specified for a constant in Chapter 2. 1 in accordance :

with the following rules:

(1) A number is terminated by one or more

spaces, tabs or line feeds.

(2) To provide compatibility with Elliott Algol

and to improve the legibility of data tapes

1o and @ are acceptable alternatives to E.

(3) Blank tape, carriage return and erase are

always neglected. ,

(4) If a Halt code is encountered while a number

is being read, the effect is as for a PAUSE

statement (see 3. 3. 5).

(5) Except as described in 6. 3. 1. 3 (which deals

with the input of alphanumeric strings) no

symbol other than the digits +, -, . and those

listed in (1) to (4) above may occur on a data

tape.

32

(Issue 2)

900

2. (1s 3s

6.2.3 Unformatted WRITE

An unformatted WRITE statement causes

numbers to be output five to aline. Thus the statement

WRITE (2) **2, ¥, 14,B(J)

would cause output according to the following pattern

P y(1,1)-¥(2,1) ~~ ¥(1,2) ~~ ¥(2, 2)
¥(1,3) ¥(2, 3) 14 B(J)

Unformatted output obeys the following rules

(1) It is restricted to numerical values

(2) These are output five to a line in floating point

format, e. g.:

-0. 19300, ,+03

(3) Both integers and real numbers are output

in this format which is equivalent to

FORMAT (5E12. 5) (see 6.3.1. 1.).

6.3. FORMAT Statements

If a READ or WRITE statement refers to a FORMAT

statement then its effect is determined by the FORMAT statement.

A FORMAT statement specifies the desired relationship

between internal representations and external character strings.

It has the form

FORMAT (q: ti 21 ti ze... tnznde)

where

q represents a possibly empty sequence of oblique strokes

(see 6. 3. 2. 2)

t represents a field descriptor or group of field descriptors

(see 6, 3.1 and 6. 3. 3)

z vepresents a field separator (see 6. 3,2). There need not be

any pairs t; Z;

If the FORMAT statement is continued over several

lines, each line must end with a field separator, and each

continuation line must start with the character $ or &.

33

(Issue 3)

900

2. 1.3%

in 900 FORTRAN

6. 3.1 Field Descriptors

The following field descriptors are available

rFw.d or Fw.d

rEw. d or Ew. d

rlw or Iw

nHh,h,... hy

nX

where the letters F, E,1, H and X represent the nature of the conversion to

be performed between the internal and external representations. They are

called conversion codes.

Descriptor

Ew. d

(wea+7)

Fw.d

(Wed+2)

Iw

(wea)

34

(Issue 3)

wandn are unsigned non-zero integer constants

representing the total number of characters

occupied by the field in the external string.

d is an integer constant representing the number

of characters following the decimal point

r the repeat count, is an integer constant which

indicates that the effect is to be as though

the following field descriptor was repeated r

times (see 6. 3. 3).

sas Bh n characters other than string quotes Zand * or

newline, chosen from the internal character

set (see Chapter 1. 5).

6.3.1.1 Numeric Field Descriptors

Effect on Output

Output a real number with a total of w characters. This

will take the form: (w-d-7) spaces, sign, 2€Y0,

decimal point, d decimal digits, ,,,sign of exponent,

two digit decimal exponent.

Output a real number with a total of w characters. This

will take the form sign, w-d-2 decimal digits, decimal

point, d decimal digits. If the number is sufficiently

small the sign will be floated, being preceded by the

requisite number of spaces. If wed+2 then at least one

digit will be punched before the decimal point.

Output an integer with a sign and w-I digits. The sign

may be floated as described under Fw. d.

that it occupies w places.

Effect on Input

900
en ee

On input these descriptors indicate that 2

number is to be input at this point, but do not imply that that number is a

real number or an integer, that it is punched in any particular style or

TABLE

Effect of Numeric Items in READ and PUNCH Lists

Item Effect in a

READ List

Effect in a

WRITE List

A simple vari-

able (which does
not occur ina
DIMENSION

statement)
e.g. I

A subscripted
variable

e.g. B(7, J)

The name of a

DIMENSIONED

variable

e.g. B

A constant

An expression

(see note 2)

The name of a

FUNCTION

(i) Inside its
defining sub-

program.
(The name
by ‘itself

without para-

meters)

A number is input

from the specified

device and its value

is assigned to the

variable.

As for a simple

variable (but see
note 1)

The appropriate number

of values is read from
the specified device and

they are assigned, in
order, to the elements

of B.

NOT PERMITTED

Data is read and ignored.

As for a simple

variable.

The value of the

variable is output

specified device.

to the

As for a simple variable

(but see note 1)

The values

of B are output in order.

As for a simple variable.

The expression is

evaluated and its value

is output

As for a simple ~wariable.

35

(Issue 3)

of the elements

1

Item Effect in a

READ List

Effect ina

WRITE List

(ii) Elswhere
(A call of the
FUNCTION
with a parameter

list)

The name of a

subroutine

NOT PERMITTED

NOT PERMITTED

NOT PERMITTED...

NOT PERMITTED

Note 1: The identity of the items in a READ or PRINT list is determined

before the values of any items in that list are input or output.

Consequently, if the next two items on a data tape are 3 and

3. 14159, one effect of

I=7

READ(1)I1, A(1)

is to assign the value 3.14159 to A(7). The value of A(3) is

unaffected.

Note 2: An expression in a READ or WRITE list may only refer to the

name of a FUNCTION if it is inside the defining sub-program of

that FUNCTION. Any other reference is an error.

6.3.1.2 Alphanumeric Field Descriptors

Descriptor Effect_on Effect on

Input Output

nih, hg...h, ‘Replace the n characters Output the n characters

or the characters which
by the string which is the

have replaced them as next item of data.

GLUBAL TESTI wth dara
WRITEC351) Feige
-READC151) “TITLE
WRITFEO351) hes e(Cece
1 FORMATCSHMMMMM) “Se tow
FND

FIRST LAST NEXT
3609 3635 3636
MMMM
TITLE

TUP
-

the result of an input

operation.

900
2.1.3.

6.3.1.3 Alphanumeric Data

Alphanumeric strings on data tapes must be

surrounded by the string quotes “and*. If the string on the data tape is

shorter than is specified by the FORMAT descriptor terminal spaces are

authomatically inserted to bring it up to the correct length. If the string is

longer it is truncated and tape is skipped up to the terminating *. ° and ‘

may not themselves appear within an alphanumeric string.

6. 3: 2 Field Separators

The field descriptors are separated by

oblique strokes or commas.

6.3.2.1 Comma

A comma placed between field descriptors

serves to separate them. It has no other effect.

6.3.2.2 Oblique Stroke.

One or more oblique strokes placed before,

after or between field descriptors serves, if placed between descriptors,

to separate them. Furthermore each oblique stroke indicates that a new-line

sequence is to be output.

6. 3. 3 Repeat Counts

If a field descriptor or a sequence of the

form:

(q,t1dyta%o-- ty 2nIn)

is preceded by an unsigned indicator the descriptor or sequence is repeated

the indicated number of times.

In 900 Fortran sequences may not occur

within sequences.

6.3.4 Exhaustion of a READ, WRITE or FORMAT List

If a formatted READ or WRITE list is exhausted

before the end of its associated FORMAT statement input or output ceases. If

the FORMAT statement is again referred to, whether by the same or another

input/output statement, it is once more obeyed from the beginning.

37

(Issue 3)

900
2,: 1.3.

If a FORMAT statement is exhausted while

elements still remain in the READ or PUNCH list, which refers to it, it

is obeyed again from the repeat count, if any, preceding its last left bracket.

6.3.5 Records

A new record is begun

a) At the beginning of a FORMAT statement

b) Whenever / is encountered

c) When going back to the repeat count, if any,

preceding the last left bracket after exhaustion

of a FORMAT statement. Cases (a) and (c)

are implicit. Case (b) is explicit.

A new record normally starts on a new line.

This effect of an implicit new record may be cancelled by the control

character (Field Descriptor) Z immediately following the appropriate left

bracket. Ifa Z is encountered at any other time it is ignored. e.g.

FORMAT (13, 4(15))

prints five integers on the first line and four on each succeeding line. The

first integer is preceded by a new line.

FORMAT (2, 13, 4(2, 15))

prints integer indefinitely on the current line.

6. 3.6 The implied FORMAT statement

The FORMAT statement used where none

is specified is

FORMAT (5E12. 5)

38

(Issue 3)

SiQ CoC FoR CoR@TRAr SECTtow

900

2. 1.35

Chapter 7: CODE

7.1 Code Sections

Certain operations can be performed faster and require

less machine instructions when written directly in SIR than when written in

FORTRAN and translated into SIR. This is because the Fortran compiler

must cater for all possibilities, but the programmer writing in machine code

need consider only his special case. Code sections can be particularly

advantageous in matrix work.

The examples in this chapter have been chosen to

illustrate the method of writing SIR coding as part of a FORTRAN program.

They are not necessarily suitable for use unmodified. Further examples

may be found by examining the object code of a Fortran source program.

The reader of this chapter is assumed to be familiar

with SIR and in particular with QF, QFMATH and the precautions necessary

in performing machine code multiplication and division of integers.

Val. d Format

A code section may be a complete sub-program

or may be part of a program, the rest of which is written in Fortran source

text. It is preceded by the statement CODE, and is terminated by the character

string FORTRAN on a newline.

The statement CODE may be numbered: the

label will refer to the first word in the code body. A SIR label may appear

on the line before the word FORTRAN: the label will refer to the following

FORTRAN statement, The word CODE must be followed immediately by

newline.

39
(Issue 3)

900
2.1.3

Example

FUNCTION INT 1 (N)

AT FIRST ENTRY N SHOULD BE ZERO, LEVEL 1, S-REGIS SET.

THE MANUAL LEVEL 1 INTERRUPT MAY THEN BE USED.
INT1 MAY BE CALLED FROM A PROGRAM LOOP, AND WILL BE

NON-ZERO IF AN INTERRUPT HAS OCCURRED.
IF (N) 1.2.1
INT 1=1W
Iw =0
RETURN

2 CODE
4 ADLI (SET LEVEL 1 S-REGISTER)
5 0
FORTRAN
GOTO 3
CODE

ADLI 0 LI
LI 5 A

3 Q
FORTRAN
Iw=1
CODE

0 @Q
14.01
4 A

15 7168
8 LI
A +0
Q +0
FORTRAN
END

a
a
q
a
q
a

w
o
r
e

To Tad SIR Facilities Available in Code Bodies

The following facilitiés may be used in a code body without

any syntactic restriction:

Constants: integer e.g. -79

fixed-point fraction e.g. +.317

octal e.g. &770123

alphanumeric e.g. £A23

Pseudo instructions e.g. 0 ;+1

40

(Issue 3)

described below.

900

2.1.3.

Addresses:

absolute e.g. 32

block relative e.g. 5;

SIR relative e.g. 3-3

identifier e.g. LIST +95

literal i.e. any constant or a

quasi-instruction e.g. =6 8191

Skip e.g. >5

Comments e.g. (THIS IS A COMMENT)

(Comments must not contain the word FORTRAN)

Other facilities must be used with care, as

7.1.2.1 Labels

Labels used in the code body must not

duplicate local labels used in the object code of the program or sub-progrim

of which the code body is part. Duplication will be avoided by observance of

the following rules:

(i) labels whose first letter is Q must have U as

their second letter (but see 7.2.1. 1);

(ii) the names of variables, used in the program

or sub-program of which the code body is

part, must not be used as labels in the code

body.

(iii) the word FORTRAN must not be used as an
identifier in a code body;

(iv) a global name must not be located more than
once.

41

(Issue 3)

7.1.2.2 Global Identifier List

A global identifier list may appear at the

head of the code body if and only if the body forms a complete sub-program.

The list must include the name of the sub-program and the names of any

other sub- programs used in the block. If any of the following identifiers

are used they must also be included:

QYO

QF
QZCOM

No other identifiers may be included in the list.

The remaining facilities, including the

following, may not be used in a code body:

sub- global labels;

end-of-tape symbol (<halt>);

end-of-program symbol (%)

options;

7.2 Communication with Fortran Text

The following paragraphs explain how code sections

in a 903 Fortran program may communicate with identifiers in sections

of the program written in Fortran text. Examples are given showing the

code equivalents of various Fortran statements. However, the code

shown does not necessarily correspond to that produced by the Translator

when processing these statements. Examples of actual translations may

be obtained by printing the object code tapes output by the Translator.

The descriptions are full at the beginning of the section.

If a particular form of parameter word is used repeatedly reference is made

back to the first example.

7.2.1 Labels

7.2.1.1 Statement numbers as SIR labels

If n is an unsigned integer between 1] and 99999

inclusive, then the Fortran statement number n is equivalent to the SIR label

Qn This fact may be used to transfer control between Fortran text and code

bodies in the same program or sub-program.

42

(Issue 3)

900
2.1; 33

7.2.1.2 Location of variables

Three types of variable may be used:

Local Variable: used in only one Fortran program or

sub-program or SIR block. Every local variable must be located in the SIR

block (either object code or code body) in which it is used. (See also below)

Common Variable: a variable named in a Fortran

COMMON statement, or operated on in a sub-program written entirely in

SIR as though it were so named. These variables are not located by name.

Formal Parameter: a variable named in parentheses

in a Fortran FUNCTION or SUBROUTINE statement, or operated on ina

sub-program written entirely in SIR as though it were so named. These

variables are not located by name.

; Care must be excercised in locating the local

variables used in the code body. If the body is a complete sub- program then

all communication with Fortran text must be via parameters (either explicit

or implicit). Space is reserved for the actual parameters by the object code;

only local workspace (and constants) for the sub- program are located in the

code body. If the code body is only part of a program or sub- program then

the user must locate, in a code body, any variables or constants that are

referred to only in code bodies. Local variables used in Fortran text are

located by the Fortran compiler when END is read.

Example

SUBROUTINE ERROR (N)

Cc THIS PUNCHES 20 BLANKS, N, 20 BLANKS

Az=0

CODE

Ql 4 -5120

1 CHAR

Ll 15 6144

1 +256

9 El
4 A

9 Q2
FORTRAN
WRITE (1) N

As-l

GOTO 1

2 RETURN

CODE

CHAR +0

FORTRAN

END 43

(Issue 3)

900
Ze dvd

7.2.2 Simple local variables

Real variables are held in packed format,

occupying two locations each. They are operated upon via QF. (See 900

Manual, Vol. 2.2.8, for further details).

Integer variables are held at 271” occupying

one location each. Both are accessed by identified addresses.

16 2a 3 Array variables

Two-dimensional arrays are stored with the

first suffix varying most rapidly. Real arrays occupy two locations per

element and integer arrays one per element.

An element is accessed by using the name

of the array as a base address, and an offset determined by its type and

position,- For arrays in COMMON or.array parameters see 7,2, 3,2 and

7.4,
7.2.3.1 Unchecked access

Example

The Fortran statements

DIMENSION A(8), 1(6, 8)

B = A(M)

= (KL)
A(8) = C

_ INT = 1(4, 3)

may be reduced to the following code body. A store map is given below to

aid interpretation of the coding.

44

(Issue 3)

(B = A [M])

4 M

1 M
5 RMOD

ll aF
8 QFtI
0 RMOD

/4 A-2
5 8B

+0

(J = 1[K, L))
4
I sll

12 +6
14. °«17

1 «K
1-1
5 IMOD
0 IMOD

/4 1

(a [al =c)
11 QF

8 OQFH
4 °C
5 Atl4
+0
(inT=1 [4, 3] .)

4 1415
5 INT

900

2.1.3.

Notes

Real numbers occupy 2

locations each

RMOD = M*2

Suffix count starts at 1

(L- 1) *6
(1st. bound = 6)

IMOD = (L- 1)k 6+(K- 2)

45

(Is sue 3)

900
2.1.3.

The order of the array elements in store is

shown in the following table}

Location Element Location Element

A , Ay I Ly

Atl I+l In

At2 b Ay 142 Tay
A+3 ‘ F

At4 Ag ; .

At5 I+7 Igy

. * I+8 lis

: . I+9 Top

At+14 Ag I+15 Tgg

A+15 I+16 Ls

+63 Tx

7.2.3.2 Checked Access

The above example makes no check that a

subscript is in the permitted range. If the user wishes to check the
subscript, he may use the array ''map'! which is present in the store at
run-time if the array has been declared in a DIMENSION statement.

The map starts at the location QYM. It

contains consecutive 3- word entries stored in the order in which the arrays
were declared. The meaning of each word is described in the following
example which demonstrates the map produced by the statements:

46
(Issue 3)

SUBROUTINE MTRXSR (R2, I, J)
DIMENSION 11(4), R1(8, 8), 12(6, 2)
DIMENSION R2(I, J), R3(9, 10)
COMMON 12, R3

900

2.1. 3.

Example

—

Description of Map Significance Refer to

array

Il (4X 0) QYMO Il Pointer to base Note 1

address

0 4 Dimension 1.
0 0 Dimension 2 = 0

R1(8 X 8) 0 Rl Pointer to base

address

0 8 Dimension 1 :

/0 8 Dimension 2; with Note 3

real indicator

I2 (6 X 2) +0 Offset in common 7.2.4.

in COMMON area

/0 6 Dimension 1; with Note 2

COMMON indicator

0 2 Dimension 2

R2(IX J) 1 QYP +0 Indirect pointer to Note l

Formal parameter actual map

0 0 Dummy dimension

/0 0 Dummy dimension,
real indicator

R3(9 X 10) +12 Offset in common 7.2.4

in COMMON area

/0 9 Dimension 1; with
COMMON indicator

/0 10 Dimension 2; with

real indicator

47
(Iseue 3)

900

2.1.3.

Notes

1, The content of word 1 is one of 3 types:

(i) If the array is in COMMON, it gives the address of the

first element relative to the start of the common area.

(For further details see 7.2. 4).

(ii) Ifthe array is a formal parameter, bit 14 is set to 1 and

the address bits contain the address of a location in the

QYP stack. This location points toward word | of the map of

the actual parameter. (see 7. 2. 5)

(iii) If the array is an actual variable, bit 14 is set to 0 and the

address bits point to the first word of the array.

2. Bit 18 of word 2 is set to 1 if and only if the array is in COMMON.

3. Bit 18 of word 3 is set to 1 if and only if the array contains real

elements.

7.2.4 Variables in COMMON

Variables declared in a COMMON statement

must be accessed by a B-lined instruction. The location QZCOM holds an

address pointing to the first location of the common area.

Example

The Fortran statements

DIMENSION ARR (3, 4)
COMMON xX, I, ARR

Y=xX
1=2
ARR (J, K) = Y
Z=ARR (1, 2)

may be reduced to the following code body. A map of the common area is

given to aid interpretation of the coding.

48

(Issue3)

{5
0

/4
5

+0

QF
QF +1

QZCOM

+2

QZCOM

900

2, 1. 3.

(Y=x)

(1=2)

(ARR [J, K] =Y)

(%6 because real)

(Z=ARR [1,2])

Address relative to
start of common area

Variable

0;

1}
23
3;
4;
5;
63

25;
263

}
x

i
ARR(1, 1)

ARR(2, 1)

ARR(3, 4)

49
{Issue By

900

2,1, 3.

hedetd® Parameters

No distinction is made between functions

and sub- routines in the object code.

7.2.5.1 Defining sub-programs

A sub-program may be written entirely in

code. If however an executable Fortran statement is included in the

sub-program, then the sub-program head and any specification statements

must also be written as Fortran text. (This is to ensure parameters are

treated correctly in the executable statement.) The object code produced

is described below.

Example

A, AP are real arrays

I is an integer

P, R1, R2 are real numbers

FUNC is a Fortran function

Using the above information, the Fortran

statement

FUNCTION FUNC(I, R2, A, AP, P)

may be compiled to the following object code:

50

(Issue 3)

900
2. 1s 3,

—

Code Significance Refer to

[FUNC

QF
QYO
QZCOM]

FUNC +0 Link

il QYO
8 Qyorl Get actual parameters

#5 Number of parameters

& 360000 Real /Integer display 7.22 5.2

+0 Space for array display 7.2. 502

QYP +0
+0
£0 Space for actual Note 1

#50 parameter pointers 7.2.5.2

+0

+0
aad

Notes

1. The sub- routine entry

ll QyYO
QyYorl

places the addresses of the actual parameters in the locations

QYP et seq. Even if an actual parameter is, in fact, a formal

parameter of the calling sub-program (and the reference may

involve a chain of indefinite length) this sub- routine will still

place the address of the ultimate actual parameter in the

appropriate QYP location.

If a formal parameter is an array the subroutine places the

address of the first word of its map in the appropriate QYP

location.

The last word in the QYP stack is used to hold the address

where the result is to be stored, in the

sub- program,

case of a FUNCTION

51

(Issue 3)

900

2 123%

7.2.5.2 Calling sub- programs

The name of the sub-program must appear

in a GLOBAL statement at the head of the block using it.

The call is a standard entry, followed by

a string of parameter words, defining the actual parameters of the call and

their type, and the store for the result.

Example

If a Fortran coded subprogram with heading:

SUBROUTINE SUB (AP; P, I)

DIMENSION A(100), AP (1)

Contains the Fortran statement

R1 = FUNC (I, R2, A, AP, P)

this statement may be reduced to the following object code:

Code Significance Refer to

11 FUNC Standard entry

8 FUNC#HI

+5 Number of actual parameters

& 360000 Real /Integer display Note 1

& 140000 Array display Note 2

o tf Pointer to actual variable Note 3

0 R2 Pointer to actual variable Note 3

0 QYM+0 Pointer to map of A Note 337.2. 3

1 QYP+0 Indirect pointer to map of. AP Note 337.2. 3.

1 QyYP+l Indirect pointer to P Note 3

Oo RI Pointer to store for result

Simple variables in COMMON should not be used as express

actual parameters,

52

(Issue 3.)

900
2.1. 3s.

Notes

1. Bit 18 = 1 if parameter 1 is real, = 0 if integer or non-existent

bit 17 = 1 if parameter 2 is real, = 0 if integer or non-existent;

etc.

2. Bit 18 = 1 if parameter 1 is an array, = 0 if simple variable or

non-existent;

bit 17 = 1 if parameter 1 is an array, = 0 if simple variable or

non-existent;
etc.

3. If the actual parameter is also a formal parameter, bit 14 is set

to 1 and the address bits point to the location (in the QYP stack)

where the actual address may be found. Otherwise bit 14 is 0

and the address bits point to the actual parameter, or to a map of

the actual parameter.

hs, 34 Floating Point Arithmetic

QF and QFMATH may be used as described

in 903 Manual, vols. 2.2.8 and 2.2.14. However the following names must

be used in code bodies for reference to QF and QFMATH:

Name used in description Name used in code body

of subroutine of 903 FORTRAN program.

QF QF

LN QFLOG

EXP QFEXP

SQRT QFSQRT

SIN QFSIN

cos QFCOS

ARCTAN QFATAN

These names must be included in a global identifier list at the head of any

block which uses them, except QF which is automatically included in any

global list punched by FORTRAN.

; 7. 3.2 Library Functions

The library functions may be called in the

game way as any other sub- program. In the 16K (LP) system the labels

QFLOG, QFEXP, QFATAN etc. are not available for use by CODE

statements, and the Library function entries must be used,

53

(Issue 3)

900

241635

Example

* 3p 3 Input and Output

The 903 FORTRAN input and output package

may be used in a code body. A description of data formats is given in

Chapter 6.3. The FORMAT statement must be written as Fortran text.

Using the same variables as in 7.2.5.2 the Fortran statement

WRITE (2,999) A, P, AP, 1, Rl

may be compiled to the following object code

Coding Significance Refer to

-11 QYO P
8 QYO+2 Entry to input/output package

/0+2 Channel number Note 1

0 Q999+1 Pointer to format code

+5 Number of parameters

& 720000 Real- Integer display 7.2.5.2

& 500000 Array display 7.2.5.2

0 QYM+0 Pointer to map of A 7.2.5.2; 7.2.3.2

1 QYP+0 Indirect pointer to P 7.2.5.2

1 QYP#+I1 Indirect pointer to map of AP 7.2.5.2; 7.2.3.2

Ol Pointer to I 162.562

ORI Pointer to Rl Tad. 5a 2

Note 1 In the word after the subroutine entry:

(i) The sign bit is set to one if and only if the statement

is a WRITE (output) statement.

(ii) The address part points to a location holding the

integer value of the channel number.

54

(Issue 3)

7.4

a
a
a

900
24 Aw 3s

Example

GLOBAL, MXTRCE |

FUNCTION MXTRCE (A, I BOUND)

FINDS SUM OVER I OF A (I, I) ##2
DIMENSION STATEMENT OMMITTED AS AIS
NOT USED IN FORTAN CODE

ee QYP +0 (FIND BASE ADDRESS OF A)
/4 1

9 GOMMON
/4 0

4 +8191

PREVEMS NOTES WITHA

DEPP DarouPle 7 Y

X IS SQUARE)
MK TRCE impel an teal <oyer

function but a fexl pesult
(f

iS petusnad.

»R INDICATION)

No Chace is ecto Were

ES0uND ts lesc than

the drenan of the

CANSEMY,

ATMebet 22 | 20\ 2.

55

(Issue 3)

900

2.15 3%

56
{Issue 3)

OK 0
/4

5

2
5

4
14
1
5
4

5
5

8

LOOPBK 4
1
5

LOOPIN 11
8
0

/4

/12
1
5

+0

10
4

9

0

4
/5
4

/5

FORTRAN

RETURN

END

QYP+1 (FIND BOUND)

+0 (SET UP CONTROL UNIT)

INCREM (SET UP INCREMENT TQ)

1 (ACCESS DIAGONAL)

INCREM
+0 (SUM = 0.0)
sUM
SUM+1
LOOPIN

MODA

INCREM
MODA

QF
QF+1
MODA (SUM = SUM+A[I, I]#A[I, I)

0

0
SUM
SUM

COUNT
COUNT
LOOPBK

QYP+3 (MXTRCE = SUM)
SUM
0
SsUM#1
1

900
L Ast Bia cf SiQ en DE 2.1.3.

SECTION

CODE
MODA +0 (POINTER TO ARRAY ELEMENT)

BOUND +0 (SIZE OF ARRAY)

COUNT ~~ +0 (CONTROL COUNT)
INCREM_ +0 (INCREMENT FOR MODA)

SUM +0 (CUMULATIVE TOTAL)

+0
LINK +0 (LINK OF MXMULT FOR ERROR)

FORTRAN

C1 Qe

%4 — 6 Code Schism CFT IB thy Boole:

57

(Issue 3)

900
2.1.3.

Chapter 8: ERROR MESSAGES

8.1 Error Detected by the Translator

Errors are displayed in the form

E n+N

<statement>

where E is the error number (as listed below)
n is the last statement number

and N is the number of statements since n.

6 inches of blank tape are run-out on the punch before

the first error in a program. When an error is detected compilation

continues in the report mode (9. 2. 1) until the operator restarts compiling.

Error No. Cause

1 Unacceptable form to left of = sign in an arithmetic statement,

3 Two operators in succession in an arithmetic expression.

Parentheses do not match.

6 Subscripted variable has not been declared in a DIMENSION

statement, or a FUNCTION has not been declared in GLOBAL.

7 Unacceptable subscript form.

8 An unsubscripted array name. has appeared in an arithmetic

statement.

DO errors:
(In DO n I=m,,m,, mg
or DO n I:m,,mg)

9 nis omitted, or is not an acceptable statement number.

10 I ig not an unsubscripted integer variable, or is omitted.

11 There is an impermissible number of my's.

12 One of the m,'s is of impermissible form,

13 Do statement has no = sign,

14 DO statements have intersecting loops.

15 A DO loop terminates with a GOTO or IF statement.

58

(issue 3)

Error No.

16

18

19

20

21

22

23

24

25

26

27

28

29

SL

32

33

38

39

40

41

42

43

44

900

2.1.3.

Cause

‘There is at least one unterminated DO!loop when END is

reached.

A number found where a variable expected.

No variable where one expected.

A statement number has more than 5 digits.

An integer or real constant is out of range.

A CALL statement has an unacceptable format.

A FUNCTION or SUBROUTINE statement has an unacceptable

format.

The word FORTRAN has not been preceded by a CODE

statement.

An error in GOTO or an IF statement.

A mispelt or otherwise corrupt or unrecognisable statement.

Statement too long or too complex to compile.

Program too long or too complex to compile.

Error in FORMAT statement.

Error in DIMENSION statement.

Error in COMMON statement.

A variable has been declared twice in a COMMON list.

In a DIMENSION statement, a bound exceeds 8192.

A variable has been declared twice in a DIMENSION list.

A. sub-program has more than 18 parameters.

A continuation line has been used other than after a GLOBAL

or FORMAT statement,

Too many sub-programs declared ina GLOBAL statement.

Error in a READ or WRITE statement.

A FUNCTION or SUBROUTINE statement has appeared in a

sub- program.

59
(Issue 3):

900
2..1. 3.

Error No,

45

46

50

60
(Issue 3)

Cause

Error in a GLOBAL statement.

Too many variables have been used in a program or

sub- program,

A sub-program does not contain a RETURN statement.

RETURN has occurred outside a sub-program.

A number appears against a statement that should not be!
labelled.

Channel number ina READ or WRITE statement is not an

integer.

<Halt code> not preceded by newline, therefore the last

statement was not processed.

8.2

probably not that desired by the programmer.

Queries raised by the translator.

900
2.3.

The translator detects certain constructions that are not in

themselves FORTRAN errots, but whose effect in 900 FORTRAN is

If one of these constructions

is detected a query is displayed, if the compiler is in Report Mode (9. 2.1).

Queries are output in parentheses.

They take the form

(Q n+N)

where Q is the query number (as listed below)

n is the last statement number

N is the number of statements since N

punch, as comments in the SIR object code.

Query No.

101

105

106

108

109

110

113

If no on line teleprinter is fitted, queries are output on the

Cause

Variable name has more than

6 characters

CONTINUE statement is not

numbered

Statement immediately

following a GOTO
statement is unnumbered

A FORMAT statement is
unnumbered

An EQUIVALENCE
statement has been used

An executable statement

has occurred before a

COMMON or a DIMENSION

statement

More than 1 GLOBAL
statement in a program or

sub- program

Otherwise queries are displayed.

Action taken by translator

The first 6 are taken as

significant

Statement ignored

Statement is compiled

normally

Statement is ignored

The statement is ignored

Statement is compiled normally

However, if the executable

statement contained a variable

mentioned in the specification

statement it will have been

compiled wrongly.

Statement ig compiled normally.

61

(Issue 3)

900

2.1.3.

8.3 Ersors detected by the assembler.

Certain errors in the FORTRAN source text will not be

detected at translation, but will be detected when the object code is

assembled, A version of 903 SIR within the run-time package is used to

assemble the object code. The following notes interpret some SIR error

messages, giving possible reasons for their output.

EU Messages (Unlocated labels)

(1) Unlocated labels of the form Qn, where n is an integer:

The statement number n is referred to by one of the following

types of statement, but n is not used as a statement number:

GOTO

IF

READ

WRITE

(2) Unlocated labels introduced by the user in GLOBAL statements:

EU messages giving sub-program names indicate that the

sub-program has not been loaded.

(3) The unlocated label is a mis-spelling of a variable name:

The variable has been mis-spelt in one of the following positions:

the right-hand side of an arithmetic statement;

a WRITE list;

a CODE body

(4) The unlocated label is a variable name:

The variable has not been assigned a value by program;

the variable has been mis-spelt in one of the following positions:

the left-hand side of an arithmetic statement;

a READ list;

a CODE body

E3 Messages (label used twice)

(1) The label (with the first 6 characters significant) has been used as

the name of at least two of the following in the same sub-program:

an array
a variable

a sub-program

a library function

a label in a CODE body

(2) Labels of the form Qn, where n is an integer:

the integer, n, has been used twice as a statement number,

62

(Issue 3)

E5 Messages (Store full)

If running the program in batch mode (9. 3. 1) re-run in

relocatable mode (9, 3. 2). If in relocatable mode extra space may be

gained by adding COMMON Statements to place arrays in the COMMON

area,

Other error messages may be caused by mis-punched tape

produced at translate time or by a mistake in a CODE body.

63

(Issue 3)

900

2a 1.35

8.4 Errors Detected at Run-time.

; Run-time errors are displayed on a newline,

Continuation, if any is possible, is made by entry at 9.

Error indications take the form

En A my Ng’ ts

where n is the error number as listed below

A is the address in the object program where the error was detected

nm, ne, ng are integers giving further information on the particular

error; the significance of these are described below

- less than 3 integers may be output.

El A P, Pp

Number of parameters in call of sub-program is not equal to number of

parameters in its definition

P, Number of parameters in definition of sub-program

Pz, Number of parameters in call

No continuation possible.

E2 A Qi Qe

Type of parameters in call of sub-program is not same as type of parameters

in its definition

Q: Real/Integer display in definition of sub-program

Qe Real/Integer display in call of sub-program

Qu, Qe represent a bit pattern indicating which parameters are real;

bit 18 = 1 if parameter 1 is real Idieoo se

= 0 if parameter 1 is integer bS-00% ay

bit 17 = 1 if parameter 2 is real 2 ;

= 0 if parameter 2 is integer Soi @_ ver bE S36

. . . . Rue te: © C pacer | cubes ~~)

No continuation is possible. Qa me | Cee eX reaPD

ww Kay Case, ou eat Gor Su-prag rom

E3 A 1 Si Se wer cee®, shore have Sen. riteg or

Array subscript is out of range

S, Actual value of subscript

Sg Maximum value allowed

On continuation S, is taken equal to 1 if S;<1

or to Sz if Sy >S2

64

(Issue 3)

900
2.1.3

E4 A 1 S, Sp

Computed GOTO variable out of range

S, Actual value of variable
S, Maximum value allowed

On continuation S,is taken equal to 1 if S, <1

or to Sg if Sy >S,

E6 A C

Parity error on input

C Decimal value of character read

On continuation the character is ignored.

E7 A CG

Illegal character input in a number

C Decimal value of the character code

On continuation, the character is treated as a terminator.

E8 A C

First character not’on input of a string

C Decimal value of character input

On continuation, the character is ignored.

E9 A

Error in the parameters supplied to a coded subprogram (e.g. magnetic tape

subroutine). Otherwise a corrupt code section.

E10 A Mg’

Increment in a DO statement, Mg < 0

On continuation, M, is taken to be +1.

Ell A N

Attempt to output a non-standardised real number to channel N..

On continuation, the number is ignored

65
(Issue 3)

E12

E13

E14

E15

E16

E17

E18

900
2.1.3

66

0

Compiler overwritten

Operator must re-input compiler (Tape 2 on an 8K system).

0

Program incorrectly compiled.

The operator must re-compile the program, taking care to perform

all operations, particularly the entry at 10 to indicate that program

is complete.

0

Object code and systems incompatible.

A program has beentranslated by one issue or version of Fortran

and attempted to run on an incompatible version.

x A

Real (floating point) overflow.
Ignore X. Ais the address in object code where the error occurred.

x A

Illegal instruction interpreted by QF.

(This means that the program has been corrupted in some way).

X and A have the meaning of E15.

A

Overflow on conversion from real to integer value.

(Outside the range =131072 to +131071)

A Zz

Error in ALOG, EXP or SQRT.

zy, = 78, Argument of ALOG(X), X<0
On continuation result = 0

z= 81, Argument of SQRT(X), X<0

On continuation result = SQRT(ABS(X))

z= 88, Argument of EXP(X), X>2'©

(Also may be caused by exonentiation Y**X, see

Chapter 2.5.3).

On continuation, result of EXP(X) is X.

(Issue 3)

900

2.1.3,

8.4.1 Number Too Large For Style of Printing

Ho He eH Ht

A string of asterisks is output to maintain
the format of results, if a number cannot be output in the format demanded:
the number is ignored.

Continuation occurs automatically.

67
(Issue 3)

900

Zals3

Chapter 9; OPERATION OF THE FORTRAN (BASIC SYSTEM)

9.1 General

On a basic 903 with 8192 word core store and no backing store’

Fortran programs are translated and run in two stages. In

the first stage one or more programs are checked for syntactic errors and

translated to SIR code on paper tape. In the second stage, the translated

programs are loaded and run. The original Fortran text is referred to as

"gource code"; the output from the Translator is "object code''.

9.1.1 Distribution

The basic 903 Fortran is distributed as a set of

two tapes.

1) 903 FORTRAN TAPE 1 (The Translator).

2) 903 FORTRAN TAPE 2 (Run time routines).

9.2 Translation

The binary Translator tape (TAPE 1) is read in by Initial

Instructions (entry at 8181). *

Fortran source code programs may be translated to paper

tape, or checked for syntactic errors using the Report Mode (9.2. 1):

1) To translate source code to paper tape enter at 8.

2) To check source code by Report Mode enter at 10.

3) To continue reading subsequent tapes of the same

program in either mode re-enter at 9..

If any error is detected during translation, no more object

code is produced, but the rest of the program is checked, as for Report Mode.

A legible X is punched on the tape at the end of every sub-program containing

an error, and the program waits. Queries are ignored during normal

translation.

* Continuous output on the punch or automatic lighting of the paper tape

"READ" lamp indicates misread or damaged tape.

68
(Issue 3)

900

2; 1. 3s

When translation or checking of a program is complete,

the operator should run out some blanks; and return to step (1) or (2) with

another program, or proceed to run the translated program (9. 3).

Complete programs are normally translated as a whole,

but individual programs and sub-programs may be translated or checked ‘

independently in the same manner. This may be done where a library of

pre-translated sub-programs is used, or when testing a large program

(to avoid re-compiling the whole program when an error is corrected in one

sub- program).

96201 Report Mode

When a tape is read in Report Mode, the

game syntactic checks are carried out as in Translation mode. Errors

-and queries (see Chapter 8) are displayed, but no object code is punched.

The use of report mode saves time whenever

a program does contain an error, and it is recommended that all programs

are checked in this way before the first attempt to translate them.

9.3 Loading and Running

There are two modes available for running 903 Basic

Fortran programs, the Batch Mode and the Relocatable Mode.

The Batch Mode should be used for all programs containing up to about

120 statements. Larger programs must be run in Relocatable Mode.

The operator must not attempt to run any program

where the object code tape ends with a legible X (see 9. 2).

When loading an object code program a store map

may be obtained. This lists the absolute addresses of all SIR object code

identifiers. This map may be used to interpret the addresses output when

vun time errors are displayed. Fortran statement numbers (an) ave printed

in the form Qn on the store map.

9.3.1 Batch Mode

The binary run time package (TAPE 2) is

input by initial instructions (entry at 8181). *

1) Load the first object code tape in the reader.

If a store map is required go to step (3).

Continuous output on the punch or automatic lighting of the read lamp

indicates mis- read or damaged tape.

69
. -s{Issue 3)

2)

4)

5)

6)

8)

Note l,

Enter at 8 to load the program. Go to step (4).

Enter at 12 to load the program and display

a store map.

If the object code contains a halt code or is

continued on further tapes, load the next tape

and re-enter at 9.

Enter at 10 to indicate that the program is

complete, including all sub-programs.

To run the program, load a data tape (if

cequired) and enter at Il.

To continue after a PAUSE, hait code on

data tape, or run time error, re-enter at 9.

To re-run the program (e.g. with different

data) go back to (6).

Return to step (1) to load the next program.

However, if the program used variables in

COMMON the assembler may be overwritten,

and TAPE 2 must be re-input before loading

another program.

The first piece of object code loaded must be the main program of

the Fortran to be run. After this the sub-programs (if any) can be loaded in

any order.

Note 2.

When a Fortran program has been tested in Batch Mode, the

Relocatable mode may be used to produce a binary tape for repeated runs

of the tested program.

9.3.2

1)

2)

3)

70

(Issue 3)

Relocatable Mode

Load the binary run time package (TAPE 2)

by initial instructions (entry at 8181) as for

Batch Mode.

Load the first object code tape, run out some

blanks on the punch, and enter at13._The_

tape is translated to relocatable binary by a

version of the SIR assembler.

If the program is continued on further tapes,

load the next tape and re-enter at 9.

4)

6)

7)

8)

9.3.3

900

2s 1s 3s

Enter at 10 to indicate that the program is

complete, including all sub-programs.

Run out some blanks and tear off the tape. If

further programs are to be run in Relocatable

Mode, return to step (2).

Load the relocatable binary tape produced at

step (2) and enter at 14,

Load the data tape (if any) and enter at 11

to run the program.

To continue after a wait: due to PAUSE, halt

code on data tape, or run time error, re-enter

at 9. To re-run the program return to step (7).

User's Library

When a 903 Fortran user has a library of

commonly used sub- programs these may be kept as a set of pre-translated

relocatable binary tapes.

Each sub-program should be translated and

then converted to relocatable binary as in steps (1) to (5) of 9, 3.2.

These library tapes can then be added to

programs run in either Batch or Relocatable Mode:

To add a library sub-program in Batch Mode

(9. 3.1) after step (5) load the tape and enter at 15.

To add a library sub-program in Relocatable

Mode (9. 3.2) after step (6) load the tape and enter at 15.

71

(Issue 3)

Chapter 10; STORE USED ON THE BASIC SYSTEM

10.1 Store Use at Translation Time.

The Translator (TAPE 1) with its workspace and lists,

occupies 8150 words of store.

10,2 Store Used at Run-time

The run-time routines occupy 3500 words approximately.

In Batch Mode the Assembler occupies 2600 words, which may be used for

the COMMON area. In relocatable Mode the Loader occupies 1100 words,

which may be used for the COMMON area. :

Thus ona basic 903, with 8192 words of store, the

following table shows the store available for the Fortran programs:

Batch Mode Relocatable Mode

Object code + local variables and arrays 2000 3500

Object code + all variables and arrays

including COMMON 4600 4600

The example below shows the store layout for a

typical program run in Relocatable Mode.

0to7 Registers

8 to 3500 Entry points and run-time routines.

3500 to 6100 Object code of Fortran program.

6100 to 7300 COMMON area for Fortran program.

6120 to 7000 Dictionary list assembled when loading

program (overwritten at run-time).

7000 to 8179 ~—« SIR loader (Fortran version).

72
(Issue 3)

900
2:1.3

Chapter 11. OPERATION OF THE FORTRAN 16K (LG) SYSTEM

11. 1 General

FORTRAN programs may be translated and run "load-

and- go" using this system, which uses a 993B or 903C configuration with

at least 16384 words of core store. The chief objective of this system is to

provide an efficient operating system when running large numbers of small

programs,

11.1.1 Distribution

The 903 FORTRAN compiler for this system

consists of one sum-~checked binary tape.

11.2 Operation of the system

(1) The binary tape is read in by Initial Instructions

(entry at 8181)”

(2) FORTRAN source code programs may be compiled

load-and- go (11. 2,2) or checked for syntactic

errors using the Report Mode (11, 2, 1)

* Continuous output on the punch or automatic

lighting of the paper tape 'READ" lamp indicates misread or damaged tape.

11,2, 1 Report Mode

To check source code by Report Mode enter

at 16. When a tape is read in Report Mode, the same syntactic checks are

carried out as in the Translation Mode. Errors and queries (see Chapter 8)

are displayed, but no object code is produced,

The use of Report Mode saves time whenever

a program does contain a syntactic error,

1) To check source code by Report Mode enter at 16

2) To continue after halt code or after a legible X is output on the punch,

enter at 9.

11,2,2 Load and Go Mode

The Load and Go Mode may be used for all

programs containing up to about 120 statements. Larger programs must

be run in Relocatable Mode on the basic system or the 16K (LP) System,

When compiling an object code program load-

and-go a store map may be obtained. This lists the absolute addresses

of all SIR object code identifiers. This map may be used to interpret the

addresses output when run time errors are displayed, FORTRAN statement

numbers (n) are printed in the form Qn on the store map,

73

(Issue 3)

900
2:4, 3

If any error is detected during translation the compiler enters

Report Mode (see 11,2. 1 above) automatically. A legible X is output on the

punch at the end of every program unit containing an error, and the compiler

waits.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Note 1,

Note 3,

Load the first source code tape in the reader (see Note 1] below)

If a store map is required go to step (3)

Enter at 8 to compile and load the program.

Go to step (4)

Enter at 12 to compile the program and display a store map.

If the source code contains a halt code or is continued on further

tapes}; load the next tape and re-enter at 9,

Enter at 10 to indicate the program is complete, including all

sub- programs,

To run the program , load a data tape (if required) and enter at 11.

(see Note 2 below)

To continue after a PAUSE, halt code on a data tape, or run-time

error, re-enter at 9.

Return to step (1) to compile the next program (see Note 3 below)

The first source code tape loaded must be the main FORTRAN

program.. After this sub- programs(if any) can be compiled in

any order,

The operator must not attempt to run the program if a legible X

has been output during compilation,

If the compiler has been overwritten by running the program, an

error indication is output (see 11, 2, 4).

11.2.3 User's Library

When a 903 FORTRAN user has a library of commonly used

sub-~ programs these may be kept as a set of pre-translated relocatable tapes,

However, these have to be translated on the basic (8K) FORTRAN system

(see Chapter 9. 3, 3 for details of this),

Once translated, these library tapes can be added to

programs run in 'load-and~-go' mode,

To add a library sub- program , after step (5) in 11, 2.2

load the library tape and enter at 15,

74

(Issue. 3)

11.2.4 Overwriting of compiler

To allow the maximum possible size of programs, certain

parts of the compiler may be overwritten when 1nninga large program. :

If the operator subsequently attempts to activate a part of the compiler that

has been corrupted then the message

E 120

is displayed,

if this message is displayed the compiler must be re-
loaded, It will be displayed if address a3 (see 11. 3, 3 below) was greater
than 5400 when the previous program was loaded,

11.3 Store Used

11,3.1 During Translation

Oto 7 Registers

8 to 3608 Runtime Routines*.
3609 to 5400(max) Available for FORTRAN object code

5475 to 8100 SIR Assembler
8224 to 16330 FORTRAN Translator and its workspace

x These are not actually used during the compilation process,

11,3,2 At Runtime

0to7 Registers

8 to 3608 Runtime Routines
3609 to 5400(max) FORTRAN object code

COMMON area runs on from the end of object code.

11.3.3 Message Displayed

At the end of compilation, a message is displayed showing

the store used by the program:

FIRST LAST COMM

al a2 a3

Programs and locai variables occupy locations al to a2 inclusive;

The COMMON are follows on from locations (a2 + 1) to a3,

In the curvent issue of the tape a3 ia printed as a four digit number.

75

(Issue 3)

900

2.1,3

Where a3 exceeds 9999 the initial character is a SIR internal code

character with a value greater than 9, i.e. the characters: ; <=> ,0

represent 10,000, 11000, 12000, 13000, 14000, 15000 and 16000 respectively.

An alphabetic character indicates that COMMON is too large for a 16384

word store.

11.4 SIZE of COMMON area

The total COMMON area should not normally exceed 8192 words

of store, allowing 1 word each for integer and two words each for real
values, However this limit may be exceeded if the last item in COMMON

for any subprogram is an array which starts before relative location 8192,

relative to the beginning of the COMMON area. For example if X, Y, K, I

are simple variables and A, IA, B are arrays?!

DIMENSION A(3000), IA(2000), 3B(2000),

COMMON X, Y, A, IA, J, K, B would be acceptable

but COMMON A, B, IA

and COMMON A, IA, B X

would not be acceptable, since the last item begins above 8192, of

the COMMON area.

If the above restriction is observed, the COMMON area may extend into

further store modules.

76

(Issue 3)

Chapter 12.

900
2.1.3

OPERATION OF THE FORTRAN 16K (LP) SYSTEM.

12.1 General,
Large FORTRAN programs may be translated and run

in 2 passes using this system which uses a 903 configuration

with at least 16384 words of core store. The object code

produced must be run using this system, as described below.

The objective of this system is to run the largest possible

FORTRAN programs on a 16K machine.

12,1,1 Distribution.

The 903 FORTRAN compiler for this system

consists of one sum-checked binary tape.

12,2 Operation of the system.

(1) The binary tape is read in by Initial

Instructions (entry at 8181).”

(2) FORTRAN source code programs may be

compiled to paper tape (12, 2, 2) or checked

for syntactic errors using the Report Mode

(12.2, 1)

Continuous output on the punch or automatic lighting of the

paper tape "READ" lamp indicates rnisread or damaged tape.

12,2.1 Report Mode.

To check source code by Report Mode enter

at 16. When a tape is read in Report Mode, the same

syntactic checks are carried out as in the Translation Mode.

Errors and queries (see Chapter 8) are displayed, but no

object code is produced.

The use of Report Mode saves time whenever

a program does contain a syntactic error, and it is

recommended that all programs are checked in this way

before the first attempt to translate them,

(1) To check source code by Report Mode, enter at 16.

(2) To continue after halt code or after a legible X is output

on the punch, enter at 9.

12.2.2 Translation Mode (Relocatable Mode)

All programs must be translated in re~

locatable mode using this system.

If an error is detected during translation the

compiler-enters Report Mode (see 12, 2,1 above) automatically,

77

(Issue 3)

A legible X is output on the punch at the end of every program unit .

containing an error, and the compiler waits. The operator must

not attempt to run such a program.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Load the first source code tape (see Note 1, below), run out

some blanks on the punch, and enter at 13, The tape is

compiled and translated to relocatable binary by a version

of the SIR assembler,

If the program is continued on further tapes, load the next

tape and re-enter at 9.

Enter at 10 to indicate the compilation is complete, (more

tape will be punched),

Run out some blanks and tear off the tape. If further

programs are to be translated, return to step (1).

Load the relocatable binary tape produced at step (4) and

enter at 14, (see Note 1, below).

Load the data tape (if any) and enter at 11 to run the program.

To continue after a wait; due to a PAUSE, halt code on a data

tape, or run-time error, re-enter at 9, To re-run the

program return to step (6)

To load another object code program return to step (5),

If the COMMON area of the last program occupied more

than 3000 locations the compiler must first be reloaded

Note 1, The main program and subprograms may be translated

independantly, at different times, though in this case the complete

program will occupy slightly more store, At step (5) the main

program tape must be loaded first, followed by subprogram tapes

at entry point 15,

78

(Issue. 3)

12,2,3 User's Library.

When a 903 FORTRAN user has a library of

commonly used sub~ programs these may be kept as a set

of pre-translated relocatable binary tapes.

Each sub- program should be translated to

relocatable binary object code as in steps (1) to (4) of 9.2.2.

These library tapes can then be added to

programs run in Relocatable Mode

after step (5) load the tape and enter at 15.

Only library tapes compiled from the source code by the

16K (LP) version of 903 FORTRAN may be used.

12,3 Store Used

12,3, 1 Cornpile Time.

The Translator with its workspace and lists

occupies 8150 words of module 1, A version of the SIR assembler,

used to output the relocatable binary object code, occupies 2500 words

of module 2, 2000 words of module 2 are shared between the SIR

dictionary and the Translator's list of COMMON items,

12, 3, 2 Run-time.

Locations 32 to 8039 of module 1 are available for

object code. 4392 words of module 2 are available as the COMMON

area, The run-time routines occupy approximately 3800 words of

module 2 and 140 words of modulel, The SIR loader occupies 1000

words of module 2,
Thus on a 903 with 16384 words of store, the

following table shows the store available for FORTRAN programs.

Object Program 8000 words (approx.)

(including local variables
and arrays)

COMMON area 4192 words

(starting at location 11992

(3800 + 8192))

See also Chapter 11,4 which applies to the 16K (LP) system.

79
(Issue 3)

I »;

